博客
关于我
一个简单的神经网络数字识别实现(入门级)
阅读量:352 次
发布时间:2019-03-04

本文共 1072 字,大约阅读时间需要 3 分钟。

图像识别模型简化实现

本文将展示一个简化版的图像识别模型,基于多层感知机(MLP)实现简单的图像分类任务。以下将简要介绍模型的实现细节、训练过程以及测试效果。

模型实现

模型采用三个典型的全连接层结构,分别对应输入层、隐藏层和输出层。以下是模型的主要实现细节:

  • 输入层:784个神经元,接收图像的像素信息。
  • 隐藏层:200个神经元,负责信息的中间处理。
  • 输出层:10个神经元,代表分类的结果。
  • 激活函数

    模型使用 sigmoid 函数作为激活函数,其定义如下:[ \sigma(x) = \frac{e^x}{e^x + 1} ]该函数将实数映射到区间 [0, 1],便于后续的训练和分类。

    权重初始化

    • 输入层到隐藏层的权重矩阵大小为 (200, 784),通过 numpy.random.normal 随机生成,均值为 0,标准差为 ( \frac{1}{\sqrt{784}} )。
    • 隐藏层到输出层的权重矩阵大小为 (10, 200),同样通过 numpy.random.normal 随机生成,均值为 0,标准差为 ( \frac{1}{\sqrt{200}} )。

    学习率

    设置学习率为 0.1,通过小批量数据进行迭代训练。

    训练过程

    数据加载

    训练数据加载从文件中读取 CSV 格式的数据集。每行数据包含一个目标标签和对应的图像像素信息。

    数据预处理

    将图像像素值归一化到 [0.01, 1] 范围内,确保训练数据与测试数据一致。

    模型训练

    模型采用批量梯度下降算法,训练 100 个 epochs,每个 epoch 遍历所有训练数据。网络权重通过反向传播和误差调整更新。

    误差计算

    输出层误差通过误差链反向传播到隐藏层,计算各层节点的误差梯度,更新权重矩阵。

    测试过程

    测试数据加载

    加载测试图片文件,确保图片格式为 28x28 的 PNG 格式。

    预测结果

    将测试图片的像素信息输入模型,输出预测分类结果。

    注意事项

  • 训练数据路径:需要根据实际数据存储路径进行修改。
  • 测试图片路径:将 r'C:\Users\dell\Desktop\6.png' 替换为实际的测试图片路径。
  • 图片格式要求:确保测试图片为 28x28 像素,常用 Windows 自带的画图软件可以编辑。
  • 运行效果

    在 Jupyter Notebook 中运行时,训练准确率可达 70%以上。如需更高准确率,可通过调整网络结构(增加隐藏层节点数或优化激活函数)进行优化。

    本文的代码和实现方法为入门级开发者提供了一个基础的图像分类模型框架,适合用于快速实现和测试。

    转载地址:http://aazh.baihongyu.com/

    你可能感兴趣的文章
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>
    nginx配置全解
    查看>>
    Nginx配置参数中文说明
    查看>>
    nginx配置域名和ip同时访问、开放多端口
    查看>>
    Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
    查看>>
    Nginx配置如何一键生成
    查看>>
    Nginx配置实例-负载均衡实例:平均访问多台服务器
    查看>>
    Nginx配置文件nginx.conf中文详解(总结)
    查看>>
    Nginx配置负载均衡到后台网关集群
    查看>>
    ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
    查看>>
    NHibernate学习[1]
    查看>>
    NHibernate异常:No persister for的解决办法
    查看>>
    NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
    查看>>
    NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
    查看>>
    NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
    查看>>
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
    查看>>
    NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
    查看>>
    NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
    查看>>